\(\int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx\) [193]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 100 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 B \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

2*B*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)+(A-B)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/co
s(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3061, 2861, 211, 2853, 222} \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 B \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[In]

Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(2*B*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(Sqrt[a]*d) + (Sqrt[2]*(A - B)*ArcTan[(Sqrt[a]*S
in[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = (A-B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx+\frac {B \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{a} \\ & = -\frac {(2 a (A-B)) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {(2 B) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a d} \\ & = \frac {2 B \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.82 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \left (\sqrt {2} B \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+(A-B) \arctan \left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(2*(Sqrt[2]*B*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + (A - B)*ArcTan[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]])*Cos[(c +
 d*x)/2])/(d*Sqrt[a*(1 + Cos[c + d*x])])

Maple [A] (verified)

Time = 8.21 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.32

method result size
default \(-\frac {\sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) \left (A \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-B \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-2 B \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right )}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}\) \(132\)
parts \(-\frac {A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}}{d \sqrt {\cos \left (d x +c \right )}\, a}+\frac {B \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}\) \(177\)

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)*(A*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))-B*2^(1/2)*arcsin(cot(d
*x+c)-csc(d*x+c))-2*B*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)))/(1+cos(d*x+c))/(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)/a

Fricas [A] (verification not implemented)

none

Time = 1.10 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.96 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx=-\frac {\sqrt {2} {\left (A - B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, B \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{a d} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-(sqrt(2)*(A - B)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) +
 2*B*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(a*d)

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))/(sqrt(a*(cos(c + d*x) + 1))*sqrt(cos(c + d*x))), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.97 (sec) , antiderivative size = 1221, normalized size of antiderivative = 12.21 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

(sqrt(2)*A*arctan2(((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*
x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x +
 c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sin(1/2*arctan2(2*(cos(d*x + c) - 1)*si
n(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d
*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sin(d*x + c))/abs(e^(I*d*x + I*c) + 1), ((abs(e^(I*d*x + I*c) + 1)
^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x +
 I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 -
4*cos(d*x + c) + 1)^(1/4)*sqrt(a)*cos(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2
, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)
^2)) + sqrt(a)*cos(d*x + c) - sqrt(a))/(sqrt(a)*abs(e^(I*d*x + I*c) + 1)))/sqrt(a) - (sqrt(2)*sqrt(a)*arctan2(
((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos(d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x + c)^2 -
2*cos(d*x + c) + 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1
)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64*cos(d*x + c) + 16)^(1/4)*sin(1/2*arctan2(8*(cos(d*x + c) - 1)*sin(d*
x + c)/abs(2*e^(I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^2 - 4*sin(d*x + c)^2 - 8*c
os(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2)^2)) + 2*sin(d*x + c))/abs(2*e^(I*d*x + I*c) + 2), ((abs(2*e^(I*d*x
 + I*c) + 2)^4 + 16*cos(d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) +
 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2
 + 96*cos(d*x + c)^2 - 64*cos(d*x + c) + 16)^(1/4)*cos(1/2*arctan2(8*(cos(d*x + c) - 1)*sin(d*x + c)/abs(2*e^(
I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^2 - 4*sin(d*x + c)^2 - 8*cos(d*x + c) + 4)
/abs(2*e^(I*d*x + I*c) + 2)^2)) + 2*cos(d*x + c) - 2)/abs(2*e^(I*d*x + I*c) + 2)) - sqrt(a)*arctan2((cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)) + sin(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + cos(d*x + c)))*B/a)/d

Giac [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(1/2)), x)